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ABSTRACT 

Consider the discrete cube f~ -- {0, 1} N, provided with the  uniform prob- 

ability P .  We denote  by d(x, A) the Hamming distance of a point  x of 

and a subset  A of ~.  We define the  influence I(A) of the i th  coordinate  

on A as follows. For x in ~,  consider the point Ti (x) obtained by changing 
the  value of the  i th  coordinate.  Then 

Ii( A) = P( {x E A; Ti(x) f~ A}). 

We prove tha t  we always have 

P(A) d(x,A)dP(x) <_ -~ E Ii(A). 
i<_N 

Since it is easy to see tha t  ~i<N li(A) 2 <- 1, this recovers the  well known 

fact t ha t  f~ d(x, A)dP(x) is at  most  of order ~ when P(A) ~ 1/2. The  
new in{armation is tha t  f~ d(x, A)dP(x) can be of order v /N  only if A 

reassembles the  Hamming  ball {x; ~i<N xi ~ N/2}. 

1. I n t r o d u c t i o n  

The theory of concentration of measure in the product of probability spaces (an 

introduction to which can be found in [T2]) expresses in various ways that  a 

generic point of a product is always "close" to a subset of probability _> 1/2. A 
large part of the success of this theory in its applications stems from the fact that  

no assumption is made on the factors. On the other hand, the crucial case always 

seems to be the case of the two point space {0, 1}, provided with the probability 

that gives mass p to 1 (0 < p < 1). Denoting by P the product probability on 
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(0, 1} N, the "extremal case" for several key results seems to be the Hamming 

ball 

A = {(xi)i<_N; E Xi >_pN }. 
i ~ N  

It is thereby natural to expect that the concentration phenomenon improves when 

A is very different from a Hamming ball. Let us define the influence Ii(A) of the 

ith coordinate upon a subset A of 12 = {0, 1) N as 

Ii(A) = P({x E A;Ti(x) r A}), 

where Ti(x) is the point obtained from x by changing the ith coordinate. We 

recall that  the Hamming distance is given by 

d(x,y) = E Ixi - Yil =- ca rd{ /<  N;xi r Yi}. 
i<_N 

THEOREM 1: For each subset A of{0, 1} N, we have 

(1.1) / d(x,A)dP(x) < ~ ~<Nli(A ) 

where p* = max(p, 1 - p). 

Let us say that  a function f on i2 is monotone if it is increasing for the natural 

(product) order on f/. 

Let us recall that  the t r a n s p o r t a t i o n  cos t  T(~, P)  of a probability measure 

to P is given as 

inf ] d(x,y)d~(x,y) 
Jr22 

where the infimum is taken over all probability measures 0 on fl 2 of marginals 

V, P, 

Let us define the function ri by ri(x) = xi - p. 

THEOREM 2: /IcY is a probability on ~t such that f -= dv/dP is monotone, then 

T(v,P) = E f^  r~dv. 
i<_N 

When the set A is monotone, considering f = P(A)-llA, v = fP, and 

observing that  in this case 

f d(x, A)dP(x) </~2 d(x, y)d~(x, y) 
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whenever 0 has P as a first marginal and a second marginal supported by A, 

we recover Theorem 1 in that case (with a better constant), since fA ridP = 
(1 - p)Ii(A). We will now discuss Theorem 1 in the case of monotone sets and 

1 In that case we have Ii(A) = 2 fA ridP, and it is (for simplicity) when p = ~. 

easy to show [T2, Proposition 2.2] that 

e Ii(A) 2 <_ eP(A) 2 log P(A)" 
i < N  

Thus (1.1) implies, using Cauchy-Schwarz, that 

(1.2) d(x, A)dP(x) < ~ P~A) 

which is the optimal order as shown by the case A = {x; ~-]~i<N xi >_ k}. But of 

course (1.1) is far superior to (1.2) because the bound does not depend upon N, 

and also because the influences can be small. In particular Kahn, Kalai and Linial 

[K-K-L] constructed an example with P(A) -- 1/2 and where each number Ii(A) 
is of order log N/N. (They also proved the deep fact that this is the smallest 

possible order.) In this case, the bound provided by (1.1) is of order log N only. 

(On the other hand, in that case the left-hand side is of order 1.) 

The weakness of Theorem 1 is that it controls only the first moment of d(., A), 

while (1.2) can be reinforced into an exponential inequality, e.g. [T1] 

1 
(1.3) P(d(.,A) >_ t) <_ ~(A)exp(- ~ ) .  

In order to bound higher moments of d(., A), we can interpolate between (1.2) 

and (1.3). To give a specific example, assuming P(A) >_ 1/2 for simplicity we 
then have, for each A > 0, 

d(x, A)2dP(x) = 2 tP(d(.,.4) > t)dt 

<_2foAAP(d(. ,A)>_t)dt+/~4texp(-~)dt 

i < N  

so that, by a suitable choice of A, 

/ d(x,A)2dP(x) < 4v/-N ~<NlieA)llog - ~i<NIi(A )" 
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We will show that  such an inequality appears optimal within logarithmic terms. 

In particular, it is unfortunately not true that 

(,..) S,(.,.),..(.) 
i<N 

This is shown in Example 3.3 below. The optimal bound that  one can find for 

the left-hand side of (1.4) at the level of logarithmic terms is better left for future 

research. Another direction worthy of investigation would be to prove that  the 

concentration inequalites involving the "convex distance" of IT2] improve subject 

to the condition ~ Ii(A) 2 << 1. 

2. P r o o f s  

We prove Theorem 1 by induction upon N and we perform the induction step 

from N to N + 1. The quantities related to N + 1 variables will be denoted with a ' 

to distinguish them from quantities related to N variables. For x in ft = {0, 1} N , 

we denote by x ~ j  the sequence obtained by adding a last coordinate equal to j .  

Given a subset A of 12' = {0, 1} N+I  we write, for j = 0, 1, 

and we observe that  

(2.1) 

where aj = P(Aj). Also, 

(2.2) 

and 

Aj = {x �9 t2N; x ~ j  �9 A} 

a = P'(A) = pal + (1 - p)ao 

Vj <_ N, Ij(A) =pIj(A1) + (1 -p)Ij(Ao) 

IN+I(A) = pP(AI \ Ao) + (1 - p)P(Ao ". A,) 
(2.3) 

> qla  - aol 

where q -- min(p, 1 - p). Using the trivial bounds 

d'(x~j, A) <_ d(x, Aj) 

d' (x~j,  A) < 1 + d(x, A j,) Vj, j '  �9 {0,1 } 
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we see tha t  

1 -  p+ f d(x, A1)dP(x);p+ f d(x, Ao)de(x)) 

To simplify notation,  we set J~ = ~ i < N  I~(Aj); J = pgl + (1 -P)Jo. Thus,  using 

(2.2), (2.3), it suffices to show tha t  

(2.4) m i n ( P a ~ + ( l _ p ) J ~ ;  1 - p  
p* 

We observe that. 

J1 P 30 J + qlal - aol 

- - + - - ;  + ~ o  ) <  (21 ~ -  - -  a 

Jz p) Jo J p(1 - p)(ae - a~)(aoJz - alJo) 
p - - +  (1 - 

al ao a aaoal  

Without  loss of generality, we can assume ao >_ al.  Thus  (2.4) holds if 

p(1 -p)(aoJ1 - a l J o )  5 qaoal. 

On the other  hand, if 

p(1 - p)(aoJ1 - a13o) > qaoal 

then 
Jo J P p(alJo -- aoJo) P +  

p* ao a p* aao 
p qal < 

- p *  ( 1  - p)a 

<~_pq (1-a--~a)-q(a~ II 

We now prove Theorem 2. In the case N = 1, it is well known (and very easy 

here) tha t  

(2.5) 

T(v,  P)  = ~ If - lldP -- (p(f(1)  - 1) + (1 - p)(1 - f (0) ) )  

= p ( 1  - p ) ( f ( 1 )  - f (0 ) )  

= f rldv 

where we have used the fact tha t  p f (1 )  + (1 - p ) f ( O )  = 1. To get a lower bound 

for T(v,p), we use tha t  for any Lipshitz function g for the Hamming distance, 

gdv - / gdP < T(v, P) 
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for the function g = ~i_<N ri. To prove the upper bound, we proceed by induction 

upon N. To perform the induction step from N to N + 1, we consider the 

projection Vl of v upon the first N coordinates, and set f l  = dvl/dP. For x in 

{0, 1} N, consider us on {0, 1} given by 

p f ( x - l )  
= p f ( x - l )  + ( 1  - p ) f ( x - o )  

We then use the inequality (that is intuitively obvious, and is the basis of many 

uses of the t ransportat ion method [M]) 

< T(vl,P) +/T(vx,#)dvl(X) T(v, P') 

(where P '  is the measure on {0,1} g+ l  and P on {0,1}g).  This makes the 

induction obvious. 

3. T h r e e  e x a m p l e s  a n d  a m e t h o d  

In this section we assume p = 1/2. 

Example 3.1: Consider a > 0 (small) and 

u = (1 - a)P + aSl 

where 1 denotes the sequence with ones only. Then 

(3.1) T(v, P) = Na/2 

since f tidy = ar i ( l )  = ~ for each i. Consider A = {x; ~ i < N  xi > 3N/4} and 

a = P(A), that  is very small. If  a = 2a, at least half of the mass of v at 1 must 

go outside A when one transports  v to P; so it must travel a distance > N/4. 
Thus if 0 is any measure on gt 2 of marginals P, v, we must have 

d(x, \ 4 / 2 y)2dO(x, Y) >_ 

(the formal argument  is left to the reader) and this is much bigger than (Na/2) 2. 

Example 3.2; We consider the sets 

A = {x �9 {0, 1 } N ; x l  = 1 or  Xl = 0 a n d  

A0 = {x �9 A;x l  = 0}. 

> 3N/4}, 
2 < i < N  
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If we apply the scheme of Theorem 2 to the uniform probability on A, we see that  

the resulting t ransport  first spreads the mass on A0 uniformly on the set of points 

x with first coordinate zero, creating the same situation as in Example 1 (a mass 

of order IA01 is transported a distance at least N/3), that  is, the probability 0 on 

f12 corresponding to this transport  is such that  f d(x; y)2dO(x, y) is much bigger 

than ( f  d(x,y)dO(x,y))2. There arc, however, transports for which both these 

quantities are of optimal order. One such transport  can be obtained through the 

scheme of Theorem 2 by reversing the order of the coordinates. What  this shows 

is that  if we try to use the scheme of Theorem 2 to control the second moment 

of d(., A) m an efficient way, we must the choose very carefully the o r d e r  of the 

coordinates (if this is at all possible) and we do not know how to do this. 

TIlE CANONICAL TRANSPORT. Since the previous example shows the relevence 

of the order of the coordinates, one would like to define a transportation method 

that  is more intrinsic. There is a seemingly canonical method to do that. The 

intuitive idea is to think of jr(x) a.s the level of a fluid, that  will flow toward 

equilibrium. The rules governing the fluid are as follows. The fluid at z earl flow 

only to a node y where d(x,y) = 1 and jrt(Y) < ft(x), and the rate at which it 

flows is proportional to ft(x) - ft(Y) (where Jrt(x) denotes the level of fluid at 

t ime t). Moreover, the new fluid reaching a given node instantly mixes with the 

fluid already there. Letting the fluid reach equilibrium defines (by tracking the 

path of the fluid) a t ransport  from v to P. More forrnally, this transport  can 

be defined as follows. Consider the probability measure #t on {0, 1} that  gives 

mass �89 - e -t) to 1, and its product Pt on ft = {0, 1} N. Define Jrt = Pt * jr (the 

canonical semi-group). Let us say that  a matrix (at(x, Y))~.~en transports  f P  to 

f tP and satisfies the following: 

(3.2) Vx, y �9 ~, at(x,y) >_ O, 

(3.3) Vx �9 ~, ~ at(z,y) =1, 
yen  

(3.4) Vy �9 ft, Z at(x'Y)f(z) = ft(Y). 

We define 

J(y) = {i < N, yi = 1} 

and we recall that  Tt(y) is obtained from y by changing the ith coordinate of y. 
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We consider the system of differential equations 

(3.5) 

d 1 

ieJ(y) 

1 

i~J(y) 

It(Y) - ft(T~(y)) at(x ,  y) 
It(Y) 

ft(T~(~)) - I t (y)  a ~x - - - - -  t~ ,T~(y)),  
ft(T~(y) ) 

(with the convention o = 0). If we use the initial condition a0(x, y) = (f~, then 

the system of solutions to (3.5) satisfies (3.2) to (3.4). To prove (3.3) and (3.4), 

we simply differentiate and use (3.5). To prove (3.2), we use in an essential way 

that f is monotone, so that, by (3.5), 

N d a t ( x , y ) >  - T l a t ( x , y ) l ,  
dt 

from which (3.2) follows (the details are left to the reader). Writing a(x, y) = 
l i m t - ~  at(x, y), we then have a(x, y) > O, 

V x C ~ ,  E a(x,y) = l, 
yCl2 

Vy e l2, E a(x'Y)f(x) = l' 
xE~ 

so that  if we define O({x, y}) = 2-Nf(x)a(x, y) the probability 0 has u and P as 

marginals. 

Let us write hi(x,y) = 1 i fx i  r Yi, and h~(x,y) = 0 i f x  = y. Thus d(x,y) = 
~i<_N h~(x,y). It turns out that 

(3.6) E hi(x, y)O({x, y}) = f rjdu. 
x , y  

To see this, it is enough to show (by differentiation) that for each t > 0 

(3.7) 2-N E hi(x, y)at(x, y)f(x) = / rjftdP. 
x , y  

We substitute in the left-hand side the value of dat(x,y) given by (3.5), and 

we observe that the terms corresponding to i ~ j cancel out. We also observe 

that  at(x,y) = 0 unless x~ > y~ for each i. This means that the "fluid can flow 

only downwards" and can be proved in the spirit of the proof of (3.2). Thus 
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the summation of (3.7) reduces to the case xj = 1, yj = 0, and use of (3.4) then 

completes the proof. Thus the previous approach does provide an alternate proof 

to Theorem 2 (in the case p = 1/2). 

It seems natural to conjecture that the previous method constructs a transport 

that is not only canonical, but in some sense optimal. Unfortunately it is very 

difficult to analyse. 

Example 3.3: For t,u > 1, we consider 

N _ 

i<N i<N 

Thus, by the central limit theorem, 

1 
lim P(B~ N) > ~-~uexp(-2u2) . 

N--+oo ' - -  

There, as well as in the rest of the proof, K denotes a universal constant, not 

necessarily the same at each occurrence. Since d(x, At,N) >_ (u - t ) v ~  on B~,N, 
we have 

/ d (x, A ,N)dP(x)= 2 / vP(d(., A ,N) >_ v)dv 

> 2N [ vP(Bt+,,N)dv 
J 

and thus 

( 3 . s )  

limN_~Ninf 1 /d2(x,  At,N)dP(x) _> -K1 fo ~ t +vV -exp(-2(t +v)2)dv 

1 
> ~-~exp(-2t2) .  

On the other hand, it is easily seen through normal approximation that  

(3.9) l imsupN-1/2 E Ii(At,N) <_ Kexp(-2t2) .  
i<N 

Relations (3.8) and (3.9) represent the main features of the example; the rest 

of the proof consists in transforming this example in a set of probability of 

order 1/2 while presuming these features. Consider now (as provided by 

[K-K-L]) a monotone set CN C {0, 1} N such that P(CN) is of order 1/2, while 

Ei<N Ii(CN) < K l o g N .  
Consider the set DN,t = CN ~ At,N, which is also such that  P(DN,t) is of order 

! Now, given two monotone sets C, A, it is simple to see that Ii(A n C) < 
2 '  
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Ii(A) § I~(C). Indeed, we recall that if Ti(x) denotes the point obtained from x 

by changing the ith coordinate, 

Ii(A) -= P({x  E A; Ti(x) ~ A}) 

and, if x E A N C, Ti(x) q[ A N C, then either T~(x) • A or Ti(x) r C. Thus, 

fixing t, we have from (3.9) that 

lim sup N -1/2 E Ii(DN,t) <_ Kexp(-2t2) .  
N-+oo i~_N 

Combining with (3.8) we see that for large N 

i E N  

e 2t2 2 

i "( N 
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